# Office of Satellite and Product Operations Environmental Satellite Processing Center



# **NVPS Green Vegetation Fraction External Users' Manual**

Version 4.3 June 4, 2024

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Satellite and Product Operations

# **Authors**

John Lindeman (OCS)

Updated by Jeffrey Augenbaum (OMS, ERT)

# **Approval Page**

# Environmental Satellite Processing Center NVPS Green Vegetation Fraction External Users' Manual

| GROUP: OMS                 | Date: 06/18/2024 | GROUP: OSPO                    | Date: 06/25/2024 |
|----------------------------|------------------|--------------------------------|------------------|
|                            |                  |                                |                  |
|                            |                  |                                |                  |
|                            |                  |                                |                  |
| I-CC AI IID-               |                  | Hanisa Dia a Dayland Amada a d |                  |
| Jeffrey Augenbaum, Lead Pr | ogrammer         | Hanjun Ding, Product Area Lead |                  |
| GROUP: OMS                 | Date: 07/08/2024 |                                |                  |
|                            |                  |                                |                  |
|                            |                  |                                |                  |
|                            |                  |                                |                  |
|                            |                  |                                |                  |
| Clay Davenport, Products M | anager           |                                |                  |

NVPS Green Vegetation Fraction External Users' Manual

# **Changes/Revisions Record**

This external users' manual is changed as required to reflect system, operational, or organizational changes. Modifications made to this document are recorded in the Changes/Revisions Record below. This record will be maintained throughout the life of the document.

| Version<br>Number | Date       | Description of Change/Revision Section/Pages Affected                                                                           |                 | Changes Made by<br>Name/Title/<br>Organization            |
|-------------------|------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|
| 4.1               | 01/2023    | Original Version                                                                                                                | All             | Lindeman                                                  |
| 4.2               | 05/2024    | Updated for NCCF; Added links to product monitoring and visualization; Updated OSGS to OCS; Updated to latest document template | 3.5; 3.5.1; All | Augenbaum                                                 |
| 4.3               | 06/04/2024 | Transfer contents to latest template,<br>perform minor editing and<br>formatting                                                | All             | Hannah Willett,<br>Technical Writer,<br>ERT Inc.          |
| 4.3               | 06/04/2024 | Quality Assurance                                                                                                               | All             | Clint Sherwood,<br>Quality Assurance<br>Manager, ERT Inc. |

#### **Preface**

This document comprises the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS), Office of Satellite and Product Operations (OSPO), publication of this NVPS Green Vegetation Fraction (GVF) External Users' Manual. This document reflects current operations for the DOC/NOAA/NESDIS Environmental Satellite Processing Center (ESPC) (NOAA5045) information technology systems. This document describes the established ESPC procedures for external users of GVF in accordance with Federal, DOC, NOAA, NESDIS and OSPO requirements.

Future updates and revisions to this document will be produced and controlled by DOC/NOAA/NESDIS for ESPC information technology systems.

The published version of this document can be found at the OSPO SharePoint Products Library.

# **Table of Contents**

| 1. | Produc           | ets                                   | 1  |
|----|------------------|---------------------------------------|----|
|    | 1.1. Prod        | uct Overview                          | 1  |
|    | 1.1.1.           | Product Requirements                  | 2  |
|    | 1.1.2.           | Product Team                          | 2  |
|    | 1.1.3.           | Product Description                   | 3  |
|    | 1.2. <b>Prod</b> | uct History                           | 4  |
|    | 1.3. Prod        | uct Access                            | 4  |
| 2. | Algorit          | .hm                                   | 8  |
|    | 2.1. Algo        | rithm Overview                        | 8  |
|    | 2.1.1.           | Pre-Processing Steps                  | 8  |
|    | 2.2. Inpu        | t Satellite Data                      | 9  |
|    | 2.2.1.           | Satellite Instrument Overview         | 9  |
|    | 2.2.2.           | Satellite Data Preprocessing Overview | 9  |
|    | 2.2.3.           | Input Satellite Data Description      | 9  |
|    | 2.3. Anci        | llary Data Files                      |    |
|    | 2.3.1.           | Static Ancillary Data                 | 10 |
|    | 2.3.2.           | Other Required Inputs                 | 10 |
| 3. | Perfori          | mance                                 | 10 |
|    | 3.1. Prod        | uct Testing                           | 10 |
|    | 3.1.1.           | Test Data Description                 | 10 |
|    | 3.1.2.           | Unit Test Plans                       | 10 |
|    | 3.2. <b>Prod</b> | luct Accuracy                         | 10 |
|    | 3.2.1.           | Test Results                          | 10 |
|    | 3.2.2.           | Product Accuracy                      | 10 |
|    | 3.3. <b>Prod</b> | uct Quality                           | 10 |
|    | 3.4. Exter       | rnal Product Tools                    | 11 |
|    | 3.5. Outp        | out Files                             | 11 |
|    | 3.5.1.           | Product Monitoring and Visualization  | 11 |
| 4. | Produc           | et Status                             | 11 |

| 5. | A    | cronyms                  | . 13 |
|----|------|--------------------------|------|
|    | 4.2. | Maintenance History      | 12   |
|    | 4.1. | Operations Documentation | 11   |

# **List of Tables**

| Table 1-1 - Product Team Members                            | 2 |
|-------------------------------------------------------------|---|
| Table 1-2 – NVPS Green Vegetation Fraction Products         | 3 |
| Table 1-3 - NVPS GVF Product Output Files                   | 4 |
| Table 1-4 - NVPS GVF Output Files Standard Name Description | 5 |
| Table 1-5 - Data Fields of the NVPS GVF Products            | 6 |
| Table 1-6 – NVPS GVF Metadata                               | 6 |
| List of Figures                                             |   |
| Figure 1-1 - Global GVF Product Image                       | 1 |

#### 1. Products

This is an External Users' Manual (EUM) document describing the NDE Vegetation Products System (NVPS) Green Vegetation Fraction (GVF) software package, which generates a consistent set of global and regional gridded vegetation products from Visible Infrared Imaging Radiometer Suite (VIIRS) observations for initializing environmental models and monitoring land use and land cover change.

The intended users of the EUM are end users of the output files and the product verification and validation (V&V) teams. The purpose of this document is to provide the document's users with information describing how to acquire the product, understand the product's features, and use any data associated with the products. External users are classified as those who do not have direct access to the processing system.

#### 1.1. Product Overview

The main function of the GVF system is to produce GVF as a NOAA-Unique Product (NUP) from data from the VIIRS sensor onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS) series of satellites. To meet the data needs of NCEP and other potential users, GVF is produced as a daily rolling weekly composite at 4-km resolution (global scale) and 1-km resolution (regional scale) encompassing North America.

Figure 1-1 depicts an image of the global GVF product image.

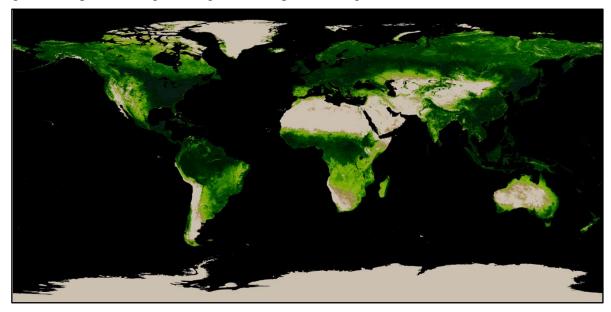



Figure 1-1 - Global GVF Product Image

Note that this product system is one of two products for NVPS – the other being Vegetation Index (VI). Further information and references for VI can be found in section **Error! Reference source not found.** 

The NVPS GVF product system produces six output files per day – global and regional domains in text, NetCDF and tif (image) formats.

#### 1.1.1. Product Requirements

Running the NVPS GVF package requires an intermediate product (IP) from the daily gridded surface reflectance products of the corresponding NVPS VI process.

#### 1.1.2. Product Team

The NVPS GVF products development team consists of members from Office of Common Services (OCS), National Environmental Satellite, Data, and Information Service (NESDIS), Office of Satellite and Product Operations (OSPO), and National Weather Service (NWS). The roles and contact information for the different product team members are identified in Table 1-1.

Table 1-1 - Product Team Members

| Team Member              | Organization | Role                               | Contact Information                   |
|--------------------------|--------------|------------------------------------|---------------------------------------|
| Walter Wolf              | OCS          | Product Portfolio Management Lead  | walter.wolf@noaa.gov                  |
| Kelly Neely              | OCS          | ASSISTT Project Manager            | kelly.neely@noaa.gov                  |
| Shanna Sampson           | OCS          | ASSISTT Solutions Architect        | shanna.sampson@noaa.gov               |
| Priyanka Roy             | OCS          | ASSISTT                            | Priyanka.roy@noaa.gov                 |
| Gian Villamil-<br>Otero  | OCS          | ASSISTT                            | gian.villamil-otero@noaa.gov          |
| Yunhui Zhao              | OCS          | ASSISTT CM Lead & Special Projects | yunhui.zhao@noaa.gov                  |
| Yunyue (Bob) Yu          | OCS          | ASSISTT                            |                                       |
| Zhangyan Jiang           | OCS          | ASSISTT                            |                                       |
| Shukming (Eva)<br>Wu     | OCS          | ASSISTT                            |                                       |
| Ming Fang                | OCS          | ASSISTT                            |                                       |
| Tracey Dorian            | OCS          | ASSISTT                            |                                       |
| Letitia Soulliard        | OCS          | ASSISTT                            |                                       |
| Hua Xie                  | OCS          | ASSISTT Science QA                 | hua.xie@noaa.gov                      |
| Mingming Yao             | OCS          | ASSISTT                            | mingming.yao@noaa.gov                 |
| Edward Borders           | OCS          | ASSISTT                            | edward.borders@noaa.gov               |
| Jonathan<br>Hansford     | OCS          | ASSISTT                            |                                       |
| Ramaswamy Tiruchirapalli | OCS          | ASSISTT                            | ramaswamy.tiruchirapalli@noaa<br>.gov |

Version 4.3 June 2024 NVPS Green Vegetation Fraction External Users' Manual

| Team Member   | Organization | Role                  | Contact Information    |
|---------------|--------------|-----------------------|------------------------|
| John Lindeman | OCS          | ASSISTT Documentation | john.lindeman@noaa.gov |

**PAL:** Hanjun Ding

Email: Hanjun.Ding@noaa.gov

Feedback, comments, criticisms, suggestions, are welcome and should be sent to:

Kelly Neely

Email: Kelly.Neely@noaa.gov

Jonathan Hansford

Email: Jonathan.hansford@noaa.gov

Tracey Dorian

Email: Tracey.Dorian@noaa.gov

Priyanka Roy

Email: Priyanka.Roy@noaa.gov

Ramaswamy Tiruchirapalli

Email: Ramaswamy. Tiruchirapalli@noaa.gov

**Edward Borders** 

Email: Edward. Borders@noaa.gov

#### 1.1.3. Product Description

The main function of the GVF system is to produce GVF as a NUP from data from the VIIRS sensor onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and NOAA-20 satellite, for applications in numerical weather and seasonal climate prediction models at the National Centers for Environmental Prediction (NCEP). The retrieval algorithm uses VIIRS red (I1), near-infrared (I2) and blue (M3) bands centered at  $0.640~\mu m$ ,  $0.865~\mu m$  and  $0.490~\mu m$ , respectively, to calculate the Enhanced Vegetation Index (EVI) and derive GVF from EVI. The initial input to the GVF algorithm is reflectance that have already been gridded within the VI algorithm. To meet the data needs of NCEP and other potential users, GVF is produced as a daily rolling weekly composite at 4-km resolution (global scale) and 1-km resolution (regional scale – North America).

Current numerical weather prediction models and land surface monitoring systems require real time, large-scale land surface information for modeling initialization and monitoring land cover change. Daily global observations of the VIIRS onboard JPSS are an excellent data source for such information. Thus, the NOAA JPSS Land Team has developed a NVPS to produce VI and GVF.

GVF produces rolling weekly (meaning, output is produced every day covering seven days) final products, at 4km resolution for the entire world and 1km resolution for a region encompassing all of North America. GVF also produces intermediate output files for its own use in later executions. Six

GVF output files are produced daily – two NetCDF files, two tif image files, and two text files. The file pairs are generated for the global and regional scales.

Table 1-2 – NVPS Green Vegetation Fraction Products

| Product Category        | Algorithm                 | Products                                                  |
|-------------------------|---------------------------|-----------------------------------------------------------|
| NDE Vegetation Products | Green Vegetation Fraction | NetCDF, Geotiff, and text output files containing all the |
| System (NVPS)           | (GVF) subsystem           | derived variables of the GVF product                      |

#### 1.2. Product History

The Office of Common Services (OCS) Algorithm Scientific Software Integration and System Transition Team (ASSISTT) group produces meteorological products designed for operational use. ASSISTT transitions meteorological product algorithms created by science/academic research teams into products for use and disseminated by NOAA operations.

The algorithm was developed by scientists and developers of STAR GVF team. The previous GVF operational product was based on Top of the Atmosphere (TOA) Normalized Vegetation Index (NDVI) derived from the AVHRR sensor (NOAA-19). With the launch of the Earth-observing satellites SNPP and J01 (NOAA-20), the VIIRS onboard SNPP and NOAA-20 have acquired measurements since November 2011. Hence NESDIS has sustained the production of a new real-time weekly GVF product from VIIRS. The VIIRS GVF is based on the Top of Canopy (TOC) EVI.

NVPS GVF is an upgrade to the S-NPP VIIRS GVF system that has been running operationally at NDE since February 2015. The S-NPP VIIRS GVF software system has been enhanced to generate along with the GVF products a gridded version (globally and regionally) of the VIIRS VI EDR products.

#### 1.3. Product Access

The 6 products created on a daily basis from the NVPS GVF product system are in text, NetCDF and tif (image) formats. The filenames are shown in Table 1-3.

Table 1-3 - NVPS GVF Product Output Files

| File                                | Description                   | Format  | Size/file    |
|-------------------------------------|-------------------------------|---------|--------------|
| GVF-WKL-REG                         | This is the weekly regional   | netCDF4 | Typical file |
| _vxry_sid_s[YYYYMMDD1]_e[YYYYMMDD7] | GVF product                   |         | size 65 MB.  |
| _c[YYYYMMDDhhmmsss].nc              |                               |         |              |
| GVF-WKL-GLB                         | This is the weekly global GVF | netCDF4 | Typical file |
| _vxry_sid_s[YYYYMMDD1]_e[YYYYMMDD7] | product                       |         | size 11 MB.  |
| _c[YYYYMMDDhhmmsss].nc              |                               |         |              |
| GVF-WKL-REG                         | Browse image of the regional  | Geotiff | Typical file |
| _vxry_sid_s[YYYYMMDD1]_e[YYYYMMDD7] | GVF product                   |         | size 34 MB   |
| _c[YYYYMMDDhhmmsss].tif             |                               |         |              |
| GVF-WKL-GLB                         | Browse image of the weekly    | Geotiff | Typical file |
| _vxry_sid_s[YYYYMMDD1]_e[YYYYMMDD7] | global GVF product            |         | size 5 MB    |
| _c[YYYYMMDDhhmmsss].tif             |                               |         |              |
| GVF-WKL-REG                         | Statistics file of the weekly | text    | Typical file |
| _vxry_sid_s[YYYYMMDD1]_e[YYYYMMDD7] | regional GVF product for      |         | size 10 KB   |
| _c[YYYYMMDDhhmmsss]_stat.txt        | monitoring purposes           |         |              |

Version 4.3 June 2024 NVPS Green Vegetation Fraction External Users' Manual

 File
 Description
 Format
 Size/file

 GVF-WKL-GLB
 Statistics file of the weekly
 text
 Typical file

 \_vxry\_sid\_s[YYYYMMDD1]\_e[YYYYMMDD7]
 global GVF product for
 size 10 KB

 \_c[YYYYMMDDhhmmsss]\_stat.txt
 monitoring purposes

Descriptions of the lettering used in the output filenames are listed in Table 1-4.

Table 1-4 - NVPS GVF Output Files Standard Name Description

| Sequence | Description                                                                 |
|----------|-----------------------------------------------------------------------------|
| GVF      | Green Vegetation Fraction                                                   |
| VI       | Vegetation Indices (NDVI, EVI)                                              |
| NDVI     | Normalized Difference Vegetation Index                                      |
| EVI      | Enhanced Vegetation Index                                                   |
| DLY      | Daily (1-day temporal scale)                                                |
| WKL      | Weekly (7-day temporal resolution)                                          |
| BWKL     | Biweekly (16-day temporal resolution, in term of conventions)               |
| GLB      | Global (spatial resolution: 4-km)                                           |
| REG      | Regional (spatial resolution:1-km)                                          |
| TOA      | Top of Atmosphere                                                           |
| TOC      | Top of Canopy                                                               |
| vxry     | Version (e.g., v2r2)                                                        |
| sid      | Indicates the observations from JPSS-01                                     |
| S        | start (data observation time)                                               |
| e        | end (data observation time)                                                 |
| c        | current (data processing time)                                              |
| YYYYMMDD | 4-digit year, 2-digit month, and 2-digit day                                |
| hhmmsss  | 2-digit hour, 2-digit minute, 2-digit second, and 1-digit fractional second |
| .nc      | netCDF4 file                                                                |
| .tif     | GeoTiff image file                                                          |
| stat.txt | Text file stored statistics analysis results                                |

Examples of the output filenames are:

GVF-WKL-GLB\_v3r0\_j01\_s20200410\_e20200416\_c202301041524440.nc

GVF-WKL-REG\_v3r0\_j01\_s20200410\_e20200416\_c202301041527160.nc

GVF-WKL-GLB\_v3r0\_j01\_s20200410\_e20200416\_c202301041524440.tif GVF-WKL-REG\_v3r0\_j01\_s20200410\_e20200416\_c202301041527160.tif

GVF-WKL-GLB\_v3r0\_j01\_s20200410\_e20200416\_c202301041524440\_stat.txt GVF-WKL-REG\_v3r0\_j01\_s20200410\_e20200416\_c202301041527160\_stat.txt

The GVF product includes the following data fields:

- 1) GVF;
- 2) Number of Pixels;

Baseline Date: January 2023

#### 3) Geospatial Coordinates: latitude, longitude

The descriptions of these data fields are listed in Table 1-5.

Table 1-5 - Data Fields of the NVPS GVF Products

| Data Name                                                    | Data Description                                               | Data Type       | Dimension                                           | Units                      | Data Range                        |
|--------------------------------------------------------------|----------------------------------------------------------------|-----------------|-----------------------------------------------------|----------------------------|-----------------------------------|
| Number_Of_Pixels                                             | Number of Pixels                                               | 8-bit Integer   | 5000x10000<br>(Global)<br>10384x28889<br>(Regional) | n/a                        | [0,255]                           |
| gvf_4km <b>OR</b> gvf_1km<br>4km – global, 1km –<br>regional | Green Vegetation<br>Fraction                                   | 8-bit Integer   | 5000x10000<br>(Global)<br>10384x28889<br>(Regional) | percent                    | [0,100]                           |
| Latitude                                                     | Geospatial coordinate                                          | 32-bit<br>float | 5000x1 (Global)<br>10384x1<br>(Regional)            | degrees                    | [-90°,90°]<br>[-7.5°,90°]         |
| Longitude                                                    | Geospatial coordinate                                          | 32-bit<br>float | 10000x1 (Global)<br>28889x1<br>(Regional)           | degrees                    | [-180°,180°]<br>[-230°,30°]       |
| plate_carree                                                 | Plate Carree projection<br>corner lats/lons and<br>resolution* | short           | 0                                                   | see<br>attribute<br>desc*  | lat: [-90, 90]<br>lon: [-180,180] |
| quality_information**                                        | product quality information**                                  | string          | 0                                                   | see<br>attribute<br>desc** | n/a                               |

<sup>\*</sup> plate\_carree values are located in variable attributes = [geospatial\_lat\_max, geospatial\_lat\_min, geospatial\_lat\_resolution, geospatial\_lat\_units, geospatial\_lon\_max, geospatial\_lon\_min, geospatial\_lon\_resolution, geospatial\_lon\_units, grid\_mapping\_name, latitude\_of\_projection\_origin, longitude\_of\_central\_meridian, standard\_parallel\_1]
\*\* quality\_information values are located in variable attributes = [total number of retrievals, percentage of optimal retrievals, percentage of bad retrievals]

Metadata contained in the NetCDF files is listed in Table 1-6.

Table 1-6 - NVPS GVF Metadata

| Attribute     | Description                                             | Type   | Array Size |
|---------------|---------------------------------------------------------|--------|------------|
| _NCProperties | NetCDF and HDF version numbers, will be                 | String | Scalar     |
|               | automatically generated                                 |        |            |
| cdm_data_type | States the geographic category the product represents   | String | Scalar     |
| creator_email | Email for the algorithm development team                | String | Scalar     |
| creator_name  | Indicates the line office and algorithm team            | String | Scalar     |
|               | responsible for product development                     |        |            |
| creator_url   | The url address for the algorithm team responsible      | String | Scalar     |
|               | for product development                                 |        |            |
| date_created  | UTC time the product file was created in 4-digit        | String | Scalar     |
|               | year, 2-digit month, 2-digit day, 2-digit hour, 2-digit |        |            |
|               | minute, 2-digit second format                           |        |            |

Version 4.3 June 2024

| Attribute                 | Description                                                                                                | Type                    | Array Size  |
|---------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|-------------|
| geospatial_lat_max        | Maximum latitude within the geospatial bounds                                                              | Float                   | Scalar      |
| geospatial_lat_min        | Minimum latitude within the geospatial bounds                                                              | Float                   | Scalar      |
| geospatial_lat_resolution | The latitudinal resolution                                                                                 | Float                   | Scalar      |
| geospatial_lat_units      | Indicates unit associated with geospatial latitude                                                         | String                  | Scalar      |
| geospatial_lon_max        | Maximum longitude within the geospatial bounds                                                             | Float                   | Scalar      |
| geospatial_lon_min        | Minimum longitude within the geospatial bounds                                                             | Float                   | Scalar      |
| geospatial_lon_resolution | The longitudinal resolution                                                                                | Float                   | Scalar      |
| geospatial_lon_units      | Indicates unit associated with geospatial longitude                                                        | String                  | Scalar      |
| history                   | Indicates unit associated with geospatial foligitude  Indicates algorithm name and version responsible for | String                  | Scalar      |
| history                   | creating the file                                                                                          | Sumg                    | Scarai      |
| id                        | Unique identifier for the product                                                                          | String                  | Scalar      |
| institution               | Indicates institution responsible for product file                                                         | String                  | Scalar      |
| instrument                | Name of the relevant satellite instrument                                                                  | String                  | Scalar      |
| keywords                  | Searchable words or phrases associated with this                                                           |                         | Scarai<br>1 |
| Reywords                  | product                                                                                                    | String                  | 1           |
| metadata_link             | Contains a URL where detailed metadata or a                                                                | String                  | Scalar      |
| metadata_mik              | product information page is located                                                                        | Sumg                    | Scarai      |
| naming_authority          | Organization responsible for providing the "id"                                                            | String                  | Scalar      |
| naming_authority          | attribute                                                                                                  | Sumg                    | Scarai      |
| platform                  | Satellite platform (name) associated with this                                                             | String                  | Scalar      |
| platform                  | product                                                                                                    | bung                    | Scarai      |
| processing_level          | Level of processing associated with product file                                                           | String                  | Scalar      |
| production_environment    |                                                                                                            | String                  | Scalar      |
| production_environment    | Processing string responsible for generating the product                                                   | bumg                    | Scarai      |
|                           |                                                                                                            |                         |             |
| production_site           | Processing site for the product                                                                            | String                  | Scalar      |
| project                   | Indicates the name(s) of the project(s) responsible for                                                    | String                  | Scalar      |
| project                   | generating the original data used as input to the                                                          | Sumg                    | 20000       |
|                           | processing system                                                                                          |                         |             |
| publisher_email           | Provides an email that can be used to contact the                                                          | String                  | Scalar      |
| F                         | person or entity who is responsible for publishing the                                                     | ~ · · · · · · · · · · · |             |
|                           | output files to the proper end users                                                                       |                         |             |
| publisher_name            | Provides the name of the organization responsible for                                                      | String                  | Scalar      |
| r                         | the product's publication                                                                                  | 8                       |             |
| publisher_url             | Provides URL of publisher's website                                                                        | String                  | Scalar      |
| source                    | Provides a list of all significant input files into the                                                    | String                  | Scalar      |
|                           | product system as a comma separated list                                                                   |                         |             |
| standard_name_vocabulary  | Provides the name and corresponding version                                                                | String                  | Scalar      |
| ·                         | number of the controlled vocabulary used                                                                   |                         |             |
| summary                   | Provides a brief summary of the product                                                                    | String                  | Scalar      |
| time_coverage_end         | Indicates the end time of the observation associated                                                       | String                  | Scalar      |
| _ <b></b>                 | with the file in 4-digit year, 2-digit month, 2-digit                                                      |                         |             |
|                           | day, 2-digit hour, 2-digit minute, 2-digit second                                                          |                         |             |
|                           | format                                                                                                     |                         |             |
| time_coverage_start       | Indicates the start time of the observation associated                                                     | String                  | Scalar      |
| <b>-</b>                  | with the file in 4-digit year, 2-digit month, 2-digit                                                      |                         |             |
|                           | day, 2-digit hour, 2-digit minute, 2-digit second                                                          |                         |             |
|                           | format                                                                                                     |                         | <u></u>     |
|                           | Provides the short name for the product                                                                    | String                  | Scalar      |

#### 2. Algorithm

#### 2.1. Algorithm Overview

The NVPS will produce daily rolling weekly Green Vegetation Fraction. The GVF output files include a 0.009° (1-km) GVF regional file, and a 0.036° (4-km) GVF global file, both in NetCDF4 format. The daily rolling weekly production scheme means that the GVF products are derived from VIIRS input data from the past 7 days, but the output is generated every day. Since both VI and GVF use daily gridded surface reflectance as intermediate data, the GVF algorithm starts from reading in the daily gridded surface reflectance.

The GVF system generates daily rolling weekly Green Vegetation Fraction through the following steps:

**Step 1**: A gridded daily surface reflectance map including surface reflectances in bands I1, I2, and M3 produced by the VI unit is read in to the GVF unit, and the gridded reflectances are screened according to a cloud detection algorithm and a solar zenith angle threshold. At the end of a 7-day period, the daily surface reflectance maps of the 7 days are composited to produce a weekly surface reflectance map using the MVA-SAVI compositing algorithm, which selects, at each GVF grid point (pixel), the observation with maximum view-angle adjusted SAVI value in the 7-day period. The 7-day compositing is conducted daily using data in the previous 7 days as input data, which is called daily rolling weekly compositing. Quality flag information of composited pixels is saved.

EVI is then calculated from the daily rolling weekly composited VIIRS surface reflectance data in bands I1, I2 and M3.

**Step 2**: High frequency noise in EVI is reduced by applying a 15-week digital smoothing filter on EVI.

**Step 3**: First take the average of the previous 7 days worth of smoothed EVI data and then calculate GVF at each grid with the fine resolution (0.003 degree). GVF is calculated by comparing the smoothed EVI against the global maximum and minimum EVI values assuming a linear relationship between EVI and GVF.

**Step 4**: GVF is aggregated to 0.009 degree and 0.036 degree resolutions for output maps. Potential gaps on the output maps at high latitudes are filled using monthly VIIRS GVF climatology.

The GVF product is smoothed and therefore no quality flags are provided in the output file. For detailed information about the GVF algorithm, see the GVF Algorithm Theoretical Basis Document (https://www.ospo.noaa.gov/products/documents/GVF\_ATBD\_V4.1.pdf).

#### 2.1.1. Pre-Processing Steps

Pre-processing is not required for NVPS GVF.

#### 2.2. Input Satellite Data

#### 2.2.1. Satellite Instrument Overview

The NVPS GVF processing system requires NVPS VI products created by VIIRS satellite data. Thus, GVF indirectly uses the VIIRS data originating from SNPP, N0AA-20, or NOAA-21.

#### 2.2.2. Satellite Data Preprocessing Overview

There are no pre-processing steps performed on the input satellite data for the NVPS GVF Products algorithm package.

#### 2.2.3. Input Satellite Data Description

This version of GVF may process SNPP, NOAA-20, or NOAA-21 data. Only data from a single satellite should be provided as the input for a single execution. A sample input filename is:

VI-SR-J01\_s<YYYYMMDD>\_e<YYYYMMDD>\_h<HR>v<VR>\_cYYYYMMDDhhmmsss.h5 where

| s <yyyymmdd></yyyymmdd>               | $\rightarrow$ | the start time in 4-digit year, 2-digit month, 2-digit day                                                                                                              |
|---------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e <yyyymmdd></yyyymmdd>               | $\rightarrow$ | the end time in 4-digit year, 2-digit month, 2-digit day                                                                                                                |
| c <yyyymmddhhmmsss></yyyymmddhhmmsss> | <b>→</b>      | the creation time in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 2-digit second, 1 digit tenths of a second format associated with the file |
| VI-SR                                 | $\rightarrow$ | intermediate product (IP) from the daily gridded surface reflectance products of VI (Vegetation Index) process                                                          |
| J01                                   | <b>→</b>      | Satellite platform                                                                                                                                                      |
| h <hr/>                               | $\rightarrow$ | horizontal range of [00, 19]                                                                                                                                            |
| v <vr></vr>                           | <b>→</b>      | vertical range of [00, 09]                                                                                                                                              |

#### 2.3. Ancillary Data Files

Previous NVPS GVF intermediate file data can be used for current GVF processing, though this is optional. Two types of the intermediate data would be required - unsmoothed and smoothed GVF EVI data. The unsmoothed GVF-EVI files are weekly composited files from the previous 14 weeks. The smoothed GVS-ASEVI-P1 files consist of 7 daily rolling IP EVI files after 15 weeks of smoothing.

#### 2.3.1. Static Ancillary Data

Static ancillary data files are included in the package delivered to operations. Climatological data and the watermask are needed to generate the NVPS GVF products.

#### 2.3.2. Other Required Inputs

Two configuration YAML files are used in the NVPS GVF products processing system: one responsible for launching the Docker container and another responsible for running the NVPS GVF processing package.

#### 3. Performance

#### 3.1. Product Testing

#### 3.1.1. Test Data Description

Test cases will be provided with each delivery of the processing package to ensure product verification can occur before the system becomes operational. Each test case will provide the necessary input data files, and their corresponding output data files. Once end users of the products are satisfied that all requirements have been sufficiently met, the products will be transitioned into operations.

#### 3.1.2. Unit Test Plans

Testing of all products produced by the processing package will occur with each software update. The Office of Common Services (OCS) is responsible for testing each algorithm and script to ensure all requirements are met. Before each product becomes operational, the products must be tested to ensure they run successfully on the intended system. If there are any issues that arise during testing procedures, all relevant groups must work together to "iron-out" these issues.

#### 3.2. Product Accuracy

#### 3.2.1. Test Results

See section Error! Reference source not found..

#### 3.2.2. Product Accuracy

#### 3.3. Product Quality

Details about product quality are listed in Table 1-5 - specifically the variable quality\_information.

#### 3.4. External Product Tools

No external product tools are provided.

#### 3.5. Output Files

NVPS GVF final products are available on PDA for user subscription. The data retention time on PDA is the standard 7 days.

#### 3.5.1. Product Monitoring and Visualization

Product quality is monitored using the NCCF Product Monitoring Tool at https://nccf.espc.nesdis.noaa.gov/mtool/index.html.

Users can use this page to monitor hourly summaries of the NVPS GVF quality based on parameter thresholds determined by the PAL.

The NCCF Products Visualization Page at https://www.ospo.noaa.gov/products/land/gvf/ can also be used to view global images of select parameters in near real-time. These images are updated weekly

#### 4. Product Status

#### 4.1. Operations Documentation

- Vargas, M., Miura, T., Shabanov, N., & Kato, A. (2013). An initial assessment of Suomi NPP VIIRS vegetation index EDR. Journal of Geophysical Research-Atmospheres, 118, 12301-12316.
- NESDIS/STAR (2021): Vegetation Index (VI) Product Algorithm Theoretical Basis Document (ATBD) v2.1
- NESDIS/STAR (2021): Green Vegetation Fraction (GVF) Product Algorithm Theoretical Basis Document (ATBD) v4.1
- NESDIS/STAR (2022): NDE Vegetation Products System (NVPS) External Users' Manual (EUM) v2.2
- NESDIS/STAR (2022): NDE Vegetation Products System (NVPS) System Maintenance Manual (SMM) v2.2
- NESDIS/STAR (2022): NVPS VI Product Delivery memo, Readme file, PCF\_PSF doc, and Production Rules doc
- NESDIS/STAR (2022): Normalized Vegetation Products System (NVPS) Vegetation Index (VI) External Users' Manual
- NESDIS/STAR (2022): Normalized Vegetation Products System (NVPS) Vegetation Index (VI) System Maintenance Manual
- NESDIS/STAR (2022): Normalized Vegetation Products System (NVPS) Green Vegetation Fraction (GVF) System Maintenance Manual

### **4.2.** Maintenance History

# 5. Acronyms

| Acronym | Definition                                                           |
|---------|----------------------------------------------------------------------|
| ASSISTT | Algorithm Scientific Software Integration and System Transition Team |
| CM      | Configuration Management                                             |
| EUM     | External Users' Manual                                               |
| EVI     | Enhanced Vegetation Index                                            |
| GVF     | Green Vegetation Fraction                                            |
| IP      | Intermediate Product                                                 |
| JPSS    | Joint Polar Satellite System                                         |
| NCEP    | National Centers for Environmental Prediction                        |
| NDE     | NPP Data Exploitation                                                |
| NDVI    | Normalized Vegetation Index                                          |
| NESDIS  | National Environmental Satellite, Data, and Information Service      |
| NOAA    | National Oceanic and Atmospheric Administration                      |
| NUP     | NOAA-Unique Product                                                  |
| NVPS    | NDE Vegetation Products System                                       |
| NWS     | National Weather Service                                             |
| OCS     | Office of Common Services                                            |
| OSPO    | Office of Satellite and Product Operations                           |
| PAL     | Product Area Lead                                                    |
| PDA     | Product Data Assimilation                                            |
| QA      | Quality Assurance                                                    |
| SNPP    | Suomi National Polar-orbiting Partnership                            |
| TOA     | Top of the Atmosphere                                                |
| TOC     | Top of Canopy                                                        |
| V&V     | Verification and Validation                                          |
| VI      | Vegetation Index                                                     |
| VIIRS   | Visible Infrared Imaging Radiometer Suite                            |